235 research outputs found

    Low-l CMB Analysis and Inpainting

    Full text link
    Reconstruction of the CMB in the Galactic plane is extremely difficult due to the dominant foreground emissions such as Dust, Free-Free or Synchrotron. For cosmological studies, the standard approach consists in masking this area where the reconstruction is not good enough. This leads to difficulties for the statistical analysis of the CMB map, especially at very large scales (to study for e.g., the low quadrupole, ISW, axis of evil, etc). We investigate in this paper how well some inpainting techniques can recover the low-â„“\ell spherical harmonic coefficients. We introduce three new inpainting techniques based on three different kinds of priors: sparsity, energy and isotropy, and we compare them. We show that two of them, sparsity and energy priors, can lead to extremely high quality reconstruction, within 1% of the cosmic variance for a mask with Fsky larger than 80%.Comment: Submitte

    CMB map restoration

    Get PDF
    Estimating the cosmological microwave background is of utmost importance for cosmology. However, its estimation from full-sky surveys such as WMAP or more recently Planck is challenging: CMB maps are generally estimated via the application of some source separation techniques which never prevent the final map from being contaminated with noise and foreground residuals. These spurious contaminations whether noise or foreground residuals are well-known to be a plague for most cosmologically relevant tests or evaluations; this includes CMB lensing reconstruction or non-Gaussian signatures search. Noise reduction is generally performed by applying a simple Wiener filter in spherical harmonics; however this does not account for the non-stationarity of the noise. Foreground contamination is usually tackled by masking the most intense residuals detected in the map, which makes CMB evaluation harder to perform. In this paper, we introduce a novel noise reduction framework coined LIW-Filtering for Linear Iterative Wavelet Filtering which is able to account for the noise spatial variability thanks to a wavelet-based modeling while keeping the highly desired linearity of the Wiener filter. We further show that the same filtering technique can effectively perform foreground contamination reduction thus providing a globally cleaner CMB map. Numerical results on simulated but realistic Planck data are provided

    Sparsity and morphological diversity for hyperspectral data analysis

    Get PDF
    Recently morphological diversity and sparsity have emerged as new and effective sources of diversity for Blind Source Separation. Based on these new concepts, novelmethods such as Generalized Morphological Component Analysis have been put forward. The latter takes advantage of the very sparse representation of structured data in large overcomplete dictionaries, to separate sources based on their morphology. Building on GMCA, the purpose of this contribution is to describe a new algorithm for hyperspectral data processing. Large-scale hyperspectral data refers to collected data that exhibit sparse spectral signatures in addition to sparse spatial morphologies, in specified dictionaries of spectral and spatial waveforms. Numerical experiments are reported which demonstrate the validity of the proposed extension for solving source separation problems involving hyperspectral data

    True CMB Power Spectrum Estimation

    Full text link
    The cosmic microwave background (CMB) power spectrum is a powerful cosmological probe as it entails almost all the statistical information of the CMB perturbations. Having access to only one sky, the CMB power spectrum measured by our experiments is only a realization of the true underlying angular power spectrum. In this paper we aim to recover the true underlying CMB power spectrum from the one realization that we have without a need to know the cosmological parameters. The sparsity of the CMB power spectrum is first investigated in two dictionaries; Discrete Cosine Transform (DCT) and Wavelet Transform (WT). The CMB power spectrum can be recovered with only a few percentage of the coefficients in both of these dictionaries and hence is very compressible in these dictionaries. We study the performance of these dictionaries in smoothing a set of simulated power spectra. Based on this, we develop a technique that estimates the true underlying CMB power spectrum from data, i.e. without a need to know the cosmological parameters. This smooth estimated spectrum can be used to simulate CMB maps with similar properties to the true CMB simulations with the correct cosmological parameters. This allows us to make Monte Carlo simulations in a given project, without having to know the cosmological parameters. The developed IDL code, TOUSI, for Theoretical pOwer spectrUm using Sparse estImation, will be released with the next version of ISAP

    Sparsity constraints for hyperspectral data analysis: linear mixture model and beyond

    Get PDF
    The recent development of multi-channel sensors has motivated interest in devising new methods for the coherent processing of multivariate data. An extensive work has already been dedicated to multivariate data processing ranging from blind source separation (BSS) to multi/hyper-spectral data restoration. Previous work has emphasized on the fundamental role played by sparsity and morphological diversity to enhance multichannel signal processing. GMCA is a recent algorithm for multichannel data analysis which was used successfully in a variety of applications including multichannel sparse decomposition, blind source separation (BSS), color image restoration and inpainting. Inspired by GMCA, a recently introduced algorithm coined HypGMCA is described for BSS applications in hyperspectral data processing. It assumes the collected data is a linear instantaneous mixture of components exhibiting sparse spectral signatures as well as sparse spatial morphologies, each in specified dictionaries of spectral and spatial waveforms. We report on numerical experiments with synthetic data and application to real observations which demonstrate the validity of the proposed method

    SZ and CMB reconstruction using Generalized Morphological Component Analysis

    Full text link
    In the last decade, the study of cosmic microwave background (CMB) data has become one of the most powerful tools to study and understand the Universe. More precisely, measuring the CMB power spectrum leads to the estimation of most cosmological parameters. Nevertheless, accessing such precious physical information requires extracting several different astrophysical components from the data. Recovering those astrophysical sources (CMB, Sunyaev-Zel'dovich clusters, galactic dust) thus amounts to a component separation problem which has already led to an intense activity in the field of CMB studies. In this paper, we introduce a new sparsity-based component separation method coined Generalized Morphological Component Analysis (GMCA). The GMCA approach is formulated in a Bayesian maximum a posteriori (MAP) framework. Numerical results show that this new source recovery technique performs well compared to state-of-the-art component separation methods already applied to CMB data.Comment: 11 pages - Statistical Methodology - Special Issue on Astrostatistics - in pres

    Blind Source Separation: the Sparsity Revolution

    Get PDF
    International audienceOver the last few years, the development of multi-channel sensors motivated interest in methods for the coherent processing of multivariate data. Some specific issues have already been addressed as testified by the wide literature on the so-called blind source separation (BSS) problem. In this context, as clearly emphasized by previous work, it is fundamental that the sources to be retrieved present some quantitatively measurable diversity. Recently, sparsity and morphological diversity have emerged as a novel and effective source of diversity for BSS. We give here some essential insights into the use of sparsity in source separation and we outline the essential role of morphological diversity as being a source of diversity or contrast between the sources. This paper overviews a sparsity-based BSS method coined Generalized Morphological Component Analysis (GMCA) that takes advantages of both morphological diversity and sparsity, using recent sparse overcomplete or redundant signal representations. GMCA is a fast and efficient blind source separation method. In remote sensing applications, the specificity of hyperspectral data should be accounted for. We extend the proposed GMCA framework to deal with hyperspectral data. In a general framework, GMCA provides a basis for multivariate data analysis in the scope of a wide range of classical multivariate data restorate. Numerical results are given in color image denoising and inpainting. Finally, GMCA is applied to the simulated ESA/Planck data. It is shown to give effective astrophysical component separation

    Application of a multidimensional wavelet denoising algorithm for the detection and characterization of astrophysical sources of gamma rays

    Get PDF
    International audienceZhang, Fadili, & Starck have recently developed a denoising procedure for Poisson data that offers advantages over other methods of intensity estimation in multiple dimensions. Their procedure, which is nonparametric, is based on thresholding wavelet coefficients. The restoration algorithm applied after thresholding provides good conservation of source flux. We present an investigation of the procedure of Zhang et al. for the detection and characterization of astrophysical sources of high-energy gamma rays, using realistic simulated observations with the Large Area Telescope (LAT). The LAT is to be launched in late 2007 on the Gamma-ray Large Area Space Telescope mission. Source detection in the LAT data is complicated by the low fluxes of point sources relative to the diffuse celestial background, the limited angular resolution, and the tremendous variation of that resolution with energy (from tens of degrees at 30 MeV to 0.1â—¦ at 10 GeV). The algorithm is very fast relative to traditional likelihood model fitting, and permits immediate estimation of spectral properties. Astrophysical sources of gamma rays, especially active galaxies, are typically quite variable, and our current work may lead to a reliable method to quickly characterize the flaring properties of newly-detected sources

    Source detection using a 3D sparse representation: application to the Fermi gamma-ray space telescope

    Get PDF
    The multiscale variance stabilization Transform (MSVST) has recently been proposed for Poisson data denoising. This procedure, which is nonparametric, is based on thresholding wavelet coefficients. We present in this paper an extension of the MSVST to 3D data (in fact 2D-1D data) when the third dimension is not a spatial dimension, but the wavelength, the energy, or the time. We show that the MSVST can be used for detecting and characterizing astrophysical sources of high-energy gamma rays, using realistic simulated observations with the Large Area Telescope (LAT). The LAT was launched in June 2008 on the Fermi Gamma-ray Space Telescope mission. The MSVST algorithm is very fast relative to traditional likelihood model fitting, and permits efficient detection across the time dimension and immediate estimation of spectral properties. Astrophysical sources of gamma rays, especially active galaxies, are typically quite variable, and our current work may lead to a reliable method to quickly characterize the flaring properties of newly-detected sources.Comment: Accepted. Full paper will figures available at http://jstarck.free.fr/aa08_msvst.pd
    • …
    corecore